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Abstract: In recent years a remarkable effort has been made in the development of new 
sensors and process analytical technology. However, it is still difficult to find reliable and 
low cost commercial sensors for on-line measurements of important variables. Therefore, 
considerable attention has been focused on the development of on-line software sensors. 
Nevertheless, the application of those algorithms to complex biological processes is still 
very incipient. In this work two different state estimators have been studied regarding 
their applicability to the recombinant Escherichia coli fed-batch fermentation. Both 
algorithms showed the ability to estimate on-line biomass and acetate concentrations. 
However, the extended Kalman observer exhibited a better convergence in spite of being 
less flexible regarding the combination of the measured and estimated variables. 
Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Nowadays, the ability to accurately and automatically 
control bioprocesses at their optimal state is of 
paramount importance to many industries since it can 
contribute for decreasing the production costs and 
increase the yield, keeping the quality of the 
metabolic products. However, the main difficulties in 
the design of monitoring and control systems for 
biological processes lie in the lack of cheap and 
reliable sensors capable of providing direct and on-
line measurements of the biological state variables, 
together with the significant model uncertainty and 
the non-linear and time-varying nature of the system. 
 
State observers, also called software sensors 
(Dochain, 2003), have received in recent years an 
increased attention since they allow on-line 

monitoring of state variables that are not measurable 
in real time (Assis and Filho, 2000; Valdés et al., 
2003; Bernard and Gouzé, 2004, Bogaerts and 
Wouwer, 2004).  
 
In the literature, two classes of state observers are 
usually found. The first class includes the classical 
observers, such as the Luenberger and Kalman 
observers, and the non-linear observers, which are 
based on the perfect knowledge of both model 
structure and parameters. On the other hand, the 
uncertainty in the model parameters can generate a 
large bias in the estimation of unmeasured state(s). 
The asymptotic observers (Bastin and Docahin, 
1990), which constitute the second class of observers, 
do not require the knowledge of the process kinetics. 
Nevertheless, a potential problem concerning these 
observers is the dependence of the estimation 



convergence rate on the operating conditions 
(Dochain, 2003). 
 
However, in spite of the well-developed theory 
behind some state observers, not many documented 
examples exist where those algorithms are applied to 
complex bioprocesses, described by dynamical 
models containing several balance equations and 
with complex kinetics. 
 
In this work, the high-cell density fed-batch 
fermentation of Escherichia coli is studied in terms 
of applicability of state observers for the on-line 
estimation of relevant variables of the process. The 
importance of this process for the biopharmaceutical 
industry is widely recognized as E. coli represents the 
organism of choice for the production of many 
recombinant proteins. However, several state 
variables are not easily measured on-line during this 
process, posing additional difficulties for the 
implementation of control algorithms. As an 
example, in spite of its important role for model 
predictive control, estimation of specific growth 
rates, prevention of acetate accumulation and 
optimization of the production of recombinant 
proteins (regarding both productivity and moment of 
induction), biomass concentration is still very 
difficult to measure on-line for this fermentation 
process. 
 
On the other hand, Flow Injection Analysis (FIA) 
methods may provide on-line data for glucose, the 
carbon source, and acetate, the main by-product 
(Rocha and Ferreira, 2002). This on-line information 
can be used by the software sensors for the 
estimation of the remaining variables included in the 
mathematical model, in what can be regarded as one 
step towards the complete characterization of the 
process. Simultaneously, the self-developed modular 
supervisory system facilitates the integration of 
different measurements, the on-line estimation of 
variables and the application of those measurements 
in control algorithms. 
 
 

2. PROCESS MODELLING 
 
The dynamics of a reaction network in a stirred tank 
bioreactor can be described by the following mass 
balance equations written in matrix form as (Bastin 
and Dochain, 1990): 
 

( ) QFDtKr
dt
d

−+−= ξξξ ,  (1) 

 
in which ξ is a vector representing the n state 
components concentrations (ξ ∈ ℜ

n
), r is the growth 

rate vector corresponding to m reactions (r ∈ ℜ
m
), K 

is the matrix of yield coefficients (K ∈ ℜ
n×m

), F is 

the vector of feed rates and Q is the vector of gaseous 
outflow rates (F, Q ∈ ℜ

n
), D is the dilution rate 

(being D-1 the residence time).  
 
As previously presented (Rocha and Ferreira, 2004), 
during the aerobic growth of E. coli with glucose as 
the only added substrate, the microorganism can 
follow three main metabolic pathways: oxidative 
growth on glucose, fermentative growth on glucose, 
and oxidative growth on acetate, the corresponding 
dynamical model for fed-batch fermentation being 
represented as follows: 
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 (2) 

 
where X, S, A, O, and C represent biomass, glucose, 
acetate, dissolved oxygen, and dissolved carbon 
dioxide concentrations, respectively; µ1, µ2, and µ3 
are the specific growth rates; ki are the yield 
(stoichiometric) coefficients; Fin and Sin are the 
substrate feed rate and the influent glucose 
concentration, respectively; W is the culture medium 
weight. CTR is the carbon dioxide transfer rate from 
liquid to gas phase, and OTR is the oxygen transfer 
rate from gas to liquid phase. 

The variation with the time of the culture medium 
weight is given by: 
 

F
dt

dW
=  (3) 

 
where F takes into account, weight variations due to 
the substrate feed rate, the amount of culture 
removed or added during sampling, base and acid 
additions, evaporation and mass taken from the 
reactor due to gas exchanges, that can not be 
considered negligible in small-scale high-cell density 
reactors. 
 
However, the three metabolic pathways represented 
in the mathematical model do not occur 
simultaneously in the cell, originating four partial 
models corresponding to the oxidative and 
fermentative growth on glucose regimen (µ1,µ2,>0) to 
the oxidative growth on glucose and acetate regimen 
(µ1, µ3, >0), and to the oxidative growth on glucose 
(µ1>0) or acetate (µ3>0) regimens.  
 
 

3. DERIVATION OF OBSERVERS 
 

Two different observers for state estimation are 
studied: the Kalman and the asymptotic observers. 
 
3.1. Extended Kalman Observer (EKO) 



 
When high nonlinearities are included in the 
mathematical model of the process, the extended 
version of the Kalman observer should be used 
(Biagiola and Figueroa, 2004). 
 
In order to obtain the EKO, the following 
assumptions are made: (i) a full knowledge of the 
model is available: the structure of the reaction 
kinetics r(ξ,t) is completely known; also the 
numerical values of all the coefficients involved in 
the model (yield and kinetic coefficients) are given; 
and (ii) D, F and Q are known on-line, together with 
a q subset of state variables. 
 
This vector of state variables measured is denoted ξ1 
and is related to the state of the system as follows: 
 
ξ1 = Lξ (4) 
 
where the q×n matrix L is an elementary matrix 
which selects the measured components of ξ. On the 
other hand, the vector of unmeasured states is 
denoted ξ2, so that (ξ1,ξ2) constitutes a partition of ξ. 
 
A general class of state observers for nonlinear 
systems of the form of eq. (1) is as follows: 
 

( ) ( )[ ]11
ˆ,ˆˆ,ˆ  

ˆ
ξξξξξ

ξ
−Ω+−+−= tQFDtKr

dt
d  (5) 

 
where ξ̂  denotes the on-line estimate of ξ, and 

( )ˆΩ ξ, t  is an n×q gain matrix depending on ξ̂ . The 

state observer design problem is then reduced to that 
of a reasonable choice of the gain matrix ( )ˆΩ ξ, t . To 

solve this problem, the observation error is 
introduced at this point, ξξ ˆ−=e , and its dynamics 
deduced (Bastin and Dochain, 1990). Considering a 
linearized tangent approximation of the dynamical 
model of the observation error around e=0 will give: 
 

( ) ( )ˆ ˆde M L e
dt

ξ ξ⎡ ⎤= −Ω⎣ ⎦
 (6) 

 
with: 
 

( ) ( )
ˆ

,ˆ
N

r t
M K DI

ξ ξ

ξ
ξ

ξ
=

⎡ ⎤∂
≡ −⎢ ⎥∂⎣ ⎦

 (7) 

 
where IN is the n×n identity matrix.  
 
Considering that the model of eq. (1) is exponentially 
observable, the design of the EKO is then reduced to 
the quadratic optimisation problem of finding the 

matrix ( )ˆΩ ξ, t  that minimises the mean square 

observation error taking into account the constraint of 
the linear tangent error model (eqs. 6 and 7). The 
solution of this optimisation problem is given by: 
 
( ) ( ) TLtRt ,ˆ,ˆ ξξ =Ω  (8) 

 
where the n×n square symmetric matrix ( )ˆR ξ, t  is 

generated by the Riccati equation: 
 

( ) ( )ˆ ˆ, ,T TdR RL LR RM t M t R
dt

ξ ξ= − + +  (9) 

 
For the fed-batch E. coli fermentation considered in 
this work, the exponential observability condition 
(Bastin and Dochain, 1990) was studied for 9 
different combinations of measured and estimated 
variables for checking the applicability of the EKO 
for this particular process. Each of those cases is 
classified as: observable for the situation when the 
full model (FM) described by eq. (2) is used, 
observable only under some of the regimens 
described in section 2 (described by a partial model – 
PM), or as not observable. Those results are 
illustrated in table 1, and it can be concluded that the 
EKO can be applied to E. coli fed-batch fermentation 
in a limited number of situations. However, it is clear 
that, with the developed on-line FIA system for the 
analysis of glucose and / or acetate, together with 
state-of-the-art sensors for measuring dissolved 
oxygen and carbon dioxide, it is possible to estimate 
on-line biomass and another state variable. Also, 
even in the absence of a FIA system and using only 
the mentioned commercial sensors for dissolved 
gases (case 4), it is possible to estimate 3 important 
state variables during the course of the fermentation, 
if the cells do not exhibit only the oxidative growth 
on acetate or the oxidative growth on glucose 
regimens. 
 

Table 1 Observability of the model for different 
combinations of the measured and estimated 

variables using the EKO and the AO. OTR, CTR, W 
and F are measured on-line for all cases.  

 
Case Measured

variables 
Estimated 
variables 

EKO AO 

1 A, O, C X, S FM FM 
2 S, A, O X, C Not Obs. FM 
3 S, O, C X, A FM FM 
4 O, C X, S, A PM PM 
5 A, O X, S, C Not Obs. PM 
6 S, O X, A, C Not Obs. PM 
7 S, C X, A, O Not Obs. PM 
8 S, A X, O, C Not Obs. PM 
9 A, C X, S, O Not Obs. PM 

 



Taking the example of measuring on-line the state 
variables A, O and C (case 1), the following state 
partition is chosen: [ ]COAT =1ξ  and 

[ ]SXT =2ξ . The matrix L is as follows: 
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The matrix ( ) ( )ˆ ˆ ˆ ˆ ˆˆ , , , ,ξ =M M X S A O C  is given by eq. 

(7), where: 
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The observer is then written from eqs. (1) and (5) 
with the last term of eq. (5) defined as: 
 

( )

1 2 3
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The gain ˆ ˆ ˆ ˆˆ( , , , , )X S A O CΩ  is calculated from eq. (8) 
as follows: 
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With the matrix R defined as: 
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The only tuning parameters for this observer are the 
initial values of the elements of this matrix, necessary 
for the numerical solution of eq. (9).  
 
3.2. Asymptotic Observer (AO) 
 
The AO allows reconstructing the missing states 
variables even when the process is not exponentially 
observable and the kinetics are unknown. The 
following additional assumptions should also be 
observed for the design of these observers: (i) the 
yield coefficients (matrix K) is known; and (ii) the 

number q of measured state variables is equal to or 
greater than the rank of the matrix K: 
q=dim(ξ)≥p=rank(K) (Bastin and Dochain, 1990). 
 
Considering a partition in the state variables vector ξ 
induced by the measured and unmeasured variables 
as in the previous case, the dynamical model can be 
re-written as follows: 
 

( )1
1 1 1 1,d K r t D F Q

dt
ξ ξ ξ= − + −  (15a) 

 

( )2
2 2 2 2,d K r t D F Q

dt
ξ ξ ξ= − + −  (15b) 

 
The following state transformation can then be 
defined: 
 

1
1

122 ξξ −−≡ KKZ  (16) 
 
Where K1

-1 is the pseudo-inverse of the matrix K1, 
considering that K1 has full rank. K1 and K2 are 
obtained from the matrix K applying the induced 
partition. 
 
The dynamics of Z, are independent of reaction rate 
r(ξ,t): 
 

( ) ( )1
2 1 1 1 2 2

dZ DZ K K F Q F Q
dt

−= − − − + −  (17) 

 
Finally, the equation of the AO is given by: 
 

( ) ( )1
2 1 1 1 2 2

ˆ ˆdZ DZ K K F Q F Q
dt

−= − − − + −  (18a) 

 
1

2 2 1 1
ˆ Ẑ K Kξ ξ−= +  (18b) 

 
Unlike the EKO, the speed of convergence of the 
estimation is completely determined by the 
experiment condition through the value of the 
dilution rate, implying that D(t) does not remain 
equal to zero for excessively long period of time 
(Bastin and Dochain, 1990). 
 
For the E. coli model of eq. (2), if the three reactions 
are to be considered, and due to the limitation 
imposed by the condition q≥p=rank(K), the number 
of measured variables has to be equal or grater than 
3. In this case, as opposed to the EKO, all the 
combinations of 3 measured variables are 
theoretically possible. The same occurs when a 
partial model is considered for the measurement of 2 
state variables, as illustrated in table 1. 
 



If the measured variables are, for example A, O and 
C as in the previous case, the matrix used in the state 
transformation of eq. (16) will be: 
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 (19) 

 
The observer, in this case, is given by the following 
equations: 
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One of the main advantages of this class of observers 
is that there are no tuning parameters like in the 
previous case, as the initial values of the Z variables 
can be directly obtained from eqs. (18b) or (20b) 
replacing the values of the estimated variables by 
their experimental initial values, usually known. 
 

 
4. RESULTS AND DISCUSSION 

 
The model simulations were performed by solving 
the differential equations of eq. (2) using the 
MATLAB version 6 subroutine ODE23s. The 
implementation of the observers using both 
“experimental” and simulated data was conducted 
using the Euler integration method. The observability 
of the model, together with most of the mathematical 
operations behind the design of the state observers 
was performed using the Symbolic Math toolbox 
running in MATLAB 6. 
 
For validating the developed observer algorithms and 
for performance comparison between the EKO and 
the AO, the most relevant cases from table 1 were 
selected for simulation: case 1 and case 4. During the 
simulation, “real” values of the state variables were 
obtained by integration of the differential equation of 
eq. (2). These “real” values were then corrupted with 
white noise, according to the standard deviations 
typically found in this process at the authors’ lab, 
originating “experimental” values. Then, the observer 
algorithms were used to obtain the “estimated” 
variables from the “experimental” data corresponding 
to the measured variables.  
 
The performance of the observers was evaluated by 
calculating the quadratic difference between 
“experimental” and “estimated” data, according to 
the following equation: 
 

2
np

exp, j est, j

j=1 exp, j

difξ
ξ ξ

ξ
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑  (21) 

 
where np is the number of experimental points and 
ξexp and ξest are “experimental” and “estimated” 
values of the state variable ξ.. 
 
The results of the performance index for both state 
observers in cases 1 and 4 are shown in table 2. 
While, as mentioned before, the EKO is much less 
flexible in terms different combinations of measured 
and estimated variables, its performance is superior 
to the AO under similar conditions. Additionally, the 
AO is less robust regarding experimental errors, 
being the performance improved when the 
“experimental” data are affected by lower noise. 
However, it should be noticed that the EKO requires 
a much higher sampling rate than AO (0.3 and 3 
minutes, respectively), which could be a problem 
regarding experimental implementation. 
 
This fact is possibly due to the exponential 
convergence of the EKO, as opposed to the 
asymptotical convergence of the AO. Another issue 
that has to be considered is the low value of the 
dilution rate for the experiment studied, which can 
negatively influence the performance of the AO.  
 
In spite of this lower performance, the AO can still 
be used with confidence for the estimation of both 
biomass and acetate concentrations.  
 
Table 2 Performance index for both EKO and AO for 

cases 1 and 4 of table 1 
 

Observer Case difX difS difA 
1 6.70 8.23 --- EKO 
4 6.93 7.93 33.7 
1 63.9 1.21E7 --- AO 

 4 53.5 1.05E7 50.7 
 

In Figure 1 the fermentation used for calculating the 
performance indexes is characterized in terms of 
“experimental” and “estimated” variables. It can be 
seen that, although the errors associated with some of 
the measured variables is significantly high, the EKO 
performs well in the estimation of the variables that 
are not measured on-line. 
 

 
5. CONCLUSIONS 

 
During a fed-batch E. coli fermentation process, 
variables such as biomass concentration are 
determined using off-line laboratory analysis, making 
them of limited use for control purposes. However, 
these variables can be on-line estimated using 
software sensors. 



 
Figure 1 Performance of the EKO regarding the time evolution of relevant variables in a fed-batch fermentation 
of E. coli. Measured variables are A, O, and C, while the estimated variables are X and S. For the estimated 
variables, the points correspond to experimental data and the lines are the estimated values. The other variables 
used for state estimation are also shown: CTR, OTR, Fin and W.  

 
 

In this work, two state observer algorithms were 
applied to the estimation of several non-measured 
state variables, and their performance and flexibility 
were compared. From simulation studies, it can be 
concluded that the extended Kalman observer is less 
flexible regarding the choice of the measured 
variables, but its performance is superior to the 
asymptotic observer. Nevertheless, this algorithm can 
still be applied to the on-line estimation of biomass 
and acetate. Experimental validation of these results 
is under progress. 
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